

RF-Parrot: Wireless Eavesdropping on Wired Audio

Yanni Yang*, Genglin Wang[†], Zhenlin An[‡], Guoming Zhang^{*}, Xiuzhen Cheng^{*}, Pengfei Hu^{*}
*School of Computer Science and Technology, Shandong University, China
†School of Information Science and Engineering, Shandong University, China
‡Department of Computer Science, Princeton University, USA

A possible solution: <u>Radio-frequency Retroreflector Attack</u> (RFRA)

RFRA was disclosed in ANT Catalog.

Michael Ossmann reproduces RFRA at DEF CON'22

Related works about RFRA:

Question: Can we wirelessly eavesdrop on the wired analog audio with RFRA?

Michael Ossmann reproduces RFRA at DEF CON'22

S Wakabayashi, et al. at WOOT'18

Contributions:

- ➢ We propose the first analog RFRA system, RF-Parrot, for eavesdropping on the wire-transmitted analog audio signal remotely via a new design of the retroreflector made from the D-MOSFET.
- ➢ We demonstrate that RF-Parrot can intercept analog audio signals at a distance of 1 m through the wall.
- ➢ We evaluate RF-Parrot using over 65,000 speech commands from thousands of people in various environments.

Digital RFRA:

- > Enhancement mode MOSFET (E-MOSFET) is the retroreflector.
- > When the digital voltage signal $V_{gs}(t)$ varies, the E-MOSFET switches between reflective and non-reflective states, amplitude-modulating the reflective waves.

Why digital RFRA does not work for analog audio?

> The E-MOSFET can only be activated by positive voltage signal.

The impact of D-MOSFET's transfer curve on received RF signal y(t):

$$y(t) = \begin{cases} \alpha \cdot V_{gs} + \beta & V_{gs} \ge 0 \quad \longrightarrow \text{ (near) Linear.} \\ -e^{\gamma \cdot V_{gs}} \cdot V_{gs} & V_c \le V_{gs} < 0 \\ 0 & V_{gs} < V_c \quad & \text{The negative part kept,} \\ \text{but distorted non-linearly.} \end{cases}$$

The comparison between MCD values of E-MOSFET and D-MOSFET:

	0	1	2	3	4	5	6	7	8	9
D-MOS	16.9	17.0	16.8	17.7	17.0	17.4	17.7	18.4	16.2	18.5
E-MOS	20.6	23.4	23.9	22.9	22.3	22.6	22.1	24.2	25.9	25.4

The spectrograms of speech commands (go, stop, up, etc.)

System Overview:

Fabrication of D-MOSFET-based Retroreflector:

RF Signal Emission and Receiving

The dipole antenna, with a length of L, would resonate at the odd multiples of half-wavelength for the RF signal. Then, the candidate resonance frequency f_r can be expressed as follows:

$$f_r = \frac{1}{2} \cdot (2n-1) \cdot c/L$$

We choose 2.25GHz, which resonates at 15 multiples of half-wavelength for a typical 1-m cable.

RF Signal Pre-processing

➤ Low-pass Filter

- Remove the DC component
- > Divide the signal into segments with fixed length
- Calculate the mel-spectrogram of each segment

Rethink non-linear transfer curve before audio Reconstruction

The negative part kept, but distorted non-linearly.

Rethink non-linear transfer curve before audio Reconstruction

$$y(t) = \begin{cases} \alpha \cdot V_{gs} + \beta & V_{gs} \ge 0 \\ -e^{\gamma \cdot V_{gs}} \cdot V_{gs} & V_c \le V_{gs} < 0 \\ 0 & V_{gs} < V_c \end{cases}$$

The negative part kept, but distorted non-linearly.

1. Decompose the negative part:

$$a_1(t) = -e^{\gamma \cdot V_{gs}(t)}, \ a_2(t) = V_{gs}(t), \ y(t) = a_1(t) \cdot a_2(t)$$

Rethink non-linear transfer curve before audio Reconstruction

$$y(t) = \begin{cases} \alpha \cdot V_{gs} + \beta & V_{gs} \ge 0 \\ -e^{\gamma \cdot V_{gs}} \cdot V_{gs} & V_c \le V_{gs} < 0 \\ \hline 0 & V_{gs} < V_c \end{cases}$$

The negative part kept, but distorted non-linearly.

1. Decompose the negative part:

$$a_1(t) = -e^{\gamma \cdot V_{gs}(t)}, \ a_2(t) = V_{gs}(t), \ y(t) = a_1(t) \cdot a_2(t)$$

2. Convolutional operation:

System Design

Audio Reconstruction

Griffin-Lim algorithm

Experiment Setup

- Audio dataset
 - Free Spoken Digit Dataset (FSDD)
 - Speech Commands Dataset (SCD)
- > Metrics:
 - Mel-cepstral distortion (MCD): A lower value indicates a better reconstruction performance.
 - Mean opinion score (MOS): A higher value indicates a better reconstruction performance.
 - Signal-to-noise ratio (SNR): A higher value indicates a better reconstruction performance.
 - Peak signal-to-noise ratio (PSNR): A higher value indicates a better reconstruction performance.
 - Accuracy and F1-score: A higher value indicates a better speech command classification performance.

Comparison between E and D MOSFETs:

COMPARISON OF MCD USING DIFFERENT MOSFETS

MOSEET type	E-MOSEET	Ι	D-MOSFET
MOSTET type	L-MOSILI	Raw	Reconstructed
MCD	23.1	17.0	6.8

Speech reconstruction performance:

Speech command classification performance:

Predicted													Pr	ed	icte	ed						
		0	1	2	3	4	5	6	7	8	9		go	st	up	do	le	ri	on	off	ye	n
	0	32	0	0	0	0	0	0	0	0	0	go	28	0	0	1	0	0	0	1	0	(
	1	0	28	1	0	0	0	0	0	0	0	stop	0	30	0	0	0	0	0	0	0	(
	2	0	0	29	0	0	0	0	0	0	0	up	0	1	28	0	0	0	0	0	0	(
e	3	0	3	0	26	0	1	0	0	0	0	_o down	0	1	0	29	0	0	0	1	0	(
L Z	4	1	0	2	0	25	0	0	0	1	1	E left	0	2	0	1	25	0	0	0	1	
·	5	0	0	0	0	0	28	0	0	2	0	. right	0	0	0	0	0	27	0	0	0	1
	6	0	0	0	0	0	0	29	0	0	0	on	0	0	0	0	1	0	29	0	0	1
	7	0	0	0	0	0	0	0	30	0	0	off	0	3	0	0	0	0	0	26	0	1
	8	0	0	0	0	0	0	0	0	31	0	yes	0	0	0	0	0	0	0	0	32	1
	9	0	1	0	0	0	1	0	0	1	28	no	0	0	0	0	0	0	0	0	0	3
			(a) 10) di	git	col	mm	an	ds				(b)	10	act	tior	ı ce	om	mai	nds	;

Confusion matrix of (a) digit (b) action commands

F1-SCORE OF SPEECH COMMAND RECOGNITION

Command	0	1	2	3	4	5	6	7	8	9
F1-score	0.98	0.92	0.95	0.93	0.91	0.93	1.0	1.0	0.94	0.93
Command	go	stop	up	down	left	right	on	off	yes	no

F1-score of digit and action commands

Impact of practical factors:

Speech Command	Original	Eavesdropped	Reconstructed
'Left'			
'Off'			
'Yes'			

- ➢ We propose the first wired audio eavesdropping attack, RF-Parrot, with a simple yet effective D-MOSFET retroreflector.
- ➢ RF-Parrot achieve 95% accuracy in identifying speech commands, by leveraging the encoder-decoder neural network with convolutional layers.
- ➤ We believe this work will raise awareness of the potential safety hazards of earphone systems.

Thanks for your listening!

Q&A

Yanni Yang, Genglin Wang, Zhenlin An, Guoming Zhang, Xiuzhen Cheng, Pengfei Hu

